[1] M. Gaudin and I. Kostov, O(n) model on a fluctuating random lattice: some exact results. Phys. Lett., B220:200, 1989.
[2] I. Kostov. Strings with discrete target space. Nucl. Phys., B376:539–598, 1992, http://arxiv.org/abshep-th/9112059.
[3] I. Kostov, Strings with discrete target space, Nucl.Phys. B376, 539–598(1992), arXiv:hep-th/9112059, http://arxiv.org/abs/hep-th/9112059
[4] I. Kostov, Exact solution of the six-vertex model on a random lattice, Nucl.Phys., B575:513–534, 2000, http://arxiv.org/abs/hep-th/9911023.
[5] I. Kostov, B. Ponsot, and D. Serban, Boundary liouville theory and 2d quantum gravity. Nucl.Phys., B683:309–362, 2004, http://arxiv.org/abs/hep-th/0307189
[6] I. K. Kostov, Boundary Loop Models and 2D Quantum Gravity, Lecture notes of the summer school on Exact methods in low-dimensional statistical
physics and quantum computing, Les Houches, June 30 – August 1, 2008, Oxford Univ. Press, 2008.
[7] G. Borot, B. Eynard, Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies, J. Stat. Mech. 2011, P01010
(2011), arXiv:0910.5896
[8] A. Elvey Price and P. Zinn-Justin. The six-vertex model on random planar maps revisited. Journal of Combinatorial Theory, Series A, 196:105739,
2023, arXiv:2007.07928
[9] G. Borot, J. Bouttier, and B. Duplantier, Nesting statistics in the O(n) loop model on random planar maps, Communications in Mathematical Physics, 404(3):1125–1229, 2023